Lecture 8: April 12, 2023

Lecturer: Ali Vakilian (notes based on notes from Madhur Tulsiani)

1 Applications of SVD: least squares approximation

We discuss another application of singular value decomposition (SVD) of matrices. Let $a_{1}, \ldots, a_{n} \in \mathbb{R}^{d}$ be points which we want to fit to a low-dimensional subspace. The goal is to find a subspace S of \mathbb{R}^{d} of dimension at most k to minimize $\sum_{i=1}^{n}\left(\operatorname{dist}\left(a_{i}, S\right)\right)^{2}$, where $\operatorname{dist}\left(a_{i}, S\right)$ denotes the distance of a_{i} from the closest point in S. We first prove the following.

Claim 1.1 Let u_{1}, \ldots, u_{k} be an orthonormal basis for S. Then

$$
\left(\operatorname{dist}\left(a_{i}, S\right)\right)^{2}=\left\|a_{i}\right\|_{2}^{2}-\sum_{j=1}^{k}\left\langle a_{i}, u_{j}\right\rangle^{2}
$$

Thus, the goal is to find a set of k orthonormal vectors u_{1}, \ldots, u_{k} to maximize the quantity $\sum_{i=1}^{n} \sum_{j=1}^{k}\left\langle a_{i}, u_{j}\right\rangle^{2}$. Let $A \in \mathbb{R}^{n \times d}$ be a matrix with the $i^{\text {th }}$ row equal to a_{i}^{T}. Then, we need to find orthonormal vectors u_{1}, \ldots, u_{k} to maximize $\left\|A u_{1}\right\|_{2}^{2}+\cdots+\left\|A u_{k}\right\|_{2}^{2}$. We will prove the following.

Proposition 1.2 Let v_{1}, \ldots, v_{r} be the right singular vectors of A corresponding to singular values $\sigma_{1} \geq \cdots \geq \sigma_{r}>0$. Then, for all $k \leq r$ and all orthonormal sets of vectors u_{1}, \ldots, u_{k}

$$
\left\|A u_{1}\right\|_{2}^{2}+\cdots+\left\|A u_{k}\right\|_{2}^{2} \leq\left\|A v_{1}\right\|_{2}^{2}+\cdots+\left\|A v_{k}\right\|_{2}^{2}
$$

Thus, the optimal solution is to take $S=\operatorname{Span}\left(v_{1}, \ldots, v_{k}\right)$. We prove the above by induction on k. For $k=1$, we note that

$$
\left\|A u_{1}\right\|_{2}^{2}=\left\langle u_{1}, A^{T} A u_{1}\right\rangle \leq \max _{v \in \mathbb{R}^{d} \backslash\{0\}} \mathcal{R}_{A^{T} A}(v)=\sigma_{1}^{2}=\left\|A v_{1}\right\|_{2}^{2}
$$

To prove the induction step for a given $k \leq r$, define

$$
V_{k-1}^{\perp}=\left\{v \in \mathbb{R}^{d} \mid\left\langle v, v_{i}\right\rangle=0 \quad \forall i \in[k-1]\right\} .
$$

First prove the following claim.

Claim 1.3 Given an orthonormal set u_{1}, \ldots, u_{k}, there exist orthonormal vectors $u_{1}^{\prime}, \ldots, u_{k}^{\prime}$ such that

- $u_{k}^{\prime} \in V_{k-1}^{\perp}$.
- Span $\left(u_{1}, \ldots, u_{k}\right)=\operatorname{Span}\left(u_{1}^{\prime}, \ldots, u_{k}^{\prime}\right)$.
$-\left\|A u_{1}\right\|_{2}^{2}+\cdots+\left\|A u_{k}\right\|_{2}^{2}=\left\|A u_{1}^{\prime}\right\|_{2}^{2}+\cdots+\left\|A u_{k}^{\prime}\right\|_{2}^{2}$.
Proof: We only provide a sketch of the proof here. Let $S=\operatorname{Span}\left(\left\{u_{1}, \ldots, u_{k}\right\}\right)$. Note that $\operatorname{dim}\left(V_{k-1}^{\perp}\right)=d-k+1$ and $\operatorname{dim}(S)=k$. Thus,

$$
\operatorname{dim}\left(V_{k-1}^{\perp} \cap S\right) \geq k+(d-k+1)-d=1
$$

Hence, there exists $u_{k}^{\prime} \in V_{k-1}^{\perp} \cap S$ with $\left\|u_{k}^{\prime}\right\|=1$. Completing this to an orthonormal basis of S gives orthonormal $u_{1}^{\prime}, \ldots, u_{k}^{\prime}$ with the first and second properties. We claim that this already implies the third property (why?).

Thus, we can assume without loss of generality that the given vectors u_{1}, \ldots, u_{k} are such that $u_{k} \in V_{k-1}^{\perp}$. Hence,

$$
\left\|A u_{k}\right\|_{2}^{2} \leq \max _{\substack{v \in V_{k}^{x}=1 \\\|v\|_{1}=1}}\|A v\|_{2}^{2}=\sigma_{k}^{2}=\left\|A v_{k}\right\|_{2}^{2} .
$$

Also, by the inductive hypothesis, we have that

$$
\left\|A u_{1}\right\|_{2}^{2}+\cdots+\left\|A u_{k-1}\right\|_{2}^{2} \leq\left\|A v_{1}\right\|_{2}^{2}+\cdots+\left\|A v_{k-1}\right\|_{2}^{2}
$$

which completes the proof. The above proof can also be used to prove that SVD gives the best rank k approximation to the matrix A in Frobenius norm.

2 Bounding the eigenvalues: Gershgorin Disc Theorem

We will now see a simple but extremely useful bound on the eigenvalues of a matrix, given by the Gershgorin disc theorem. Many useful variants of this bound can also be derived from the observation that for any invertible matrix S, the matrices $S^{-1} M S$ and M have the same eigenvalues (prove it!).

Theorem 2.1 (Gershgorin Disc Theorem) Let $M \in \mathbb{C}^{n \times n}$. Let $R_{i}=\sum_{j \neq i}\left|M_{i j}\right|$. Define the set

$$
\operatorname{Disc}\left(M_{i i}, R_{i}\right):=\left\{z \in \mathbb{C}:\left|z-M_{i i}\right| \leq R_{i}\right\} .
$$

If λ is an eigenvalue of M, then

$$
\lambda \in \bigcup_{i=1}^{n} \operatorname{Disc}\left(M_{i i}, R_{i}\right)
$$

Proof: Let $x \in \mathbb{C}^{n}$ be an eigenvector corresponding to the eigenvalue λ. Let $i_{0}=$ $\operatorname{argmax}_{i \in[n]}\left\{\left|x_{i}\right|\right\}$. Since x is an eigenvector, we have

$$
M x=\lambda x \quad \Rightarrow \quad \forall i \in[n] \sum_{j=1}^{n} M_{i j} x_{j}=\lambda x_{i} .
$$

In particular, we have that for $i=i_{0}$,

$$
\sum_{j=1}^{n} M_{i_{0} j} x_{j}=\lambda x_{i_{0}} \Rightarrow \sum_{j=1}^{n} M_{i_{0} j} \frac{x_{j}}{x_{i_{0}}}=\lambda \Rightarrow \sum_{j \neq i_{0}} M_{i_{0} j} \frac{x_{j}}{x_{i_{0}}}=\lambda-M_{i_{0} i_{0}}
$$

Thus, we have

$$
\left|\lambda-M_{i_{0} i_{0}}\right| \leq \sum_{j \neq i_{0}}\left|M_{i_{0} j}\right| \cdot\left|\frac{x_{j}}{x_{i_{0}}}\right| \leq \sum_{j \neq i_{0}}\left|M_{i_{0} j}\right|=R_{i_{0}} .
$$

